Metamath Proof Explorer


Theorem minvecolem4c

Description: Lemma for minveco . The infimum of the distances to A is a real number. (Contributed by Mario Carneiro, 16-Jun-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X = BaseSet U
minveco.m M = - v U
minveco.n N = norm CV U
minveco.y Y = BaseSet W
minveco.u φ U CPreHil OLD
minveco.w φ W SubSp U CBan
minveco.a φ A X
minveco.d D = IndMet U
minveco.j J = MetOpen D
minveco.r R = ran y Y N A M y
minveco.s S = sup R <
minveco.f φ F : Y
minveco.1 φ n A D F n 2 S 2 + 1 n
Assertion minvecolem4c φ S

Proof

Step Hyp Ref Expression
1 minveco.x X = BaseSet U
2 minveco.m M = - v U
3 minveco.n N = norm CV U
4 minveco.y Y = BaseSet W
5 minveco.u φ U CPreHil OLD
6 minveco.w φ W SubSp U CBan
7 minveco.a φ A X
8 minveco.d D = IndMet U
9 minveco.j J = MetOpen D
10 minveco.r R = ran y Y N A M y
11 minveco.s S = sup R <
12 minveco.f φ F : Y
13 minveco.1 φ n A D F n 2 S 2 + 1 n
14 1 2 3 4 5 6 7 8 9 10 minvecolem1 φ R R w R 0 w
15 14 simp1d φ R
16 14 simp2d φ R
17 0re 0
18 14 simp3d φ w R 0 w
19 breq1 x = 0 x w 0 w
20 19 ralbidv x = 0 w R x w w R 0 w
21 20 rspcev 0 w R 0 w x w R x w
22 17 18 21 sylancr φ x w R x w
23 infrecl R R x w R x w sup R <
24 15 16 22 23 syl3anc φ sup R <
25 11 24 eqeltrid φ S