Metamath Proof Explorer


Theorem mirauto

Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirauto.m M = S T
mirauto.x X = M A
mirauto.y Y = M B
mirauto.z Z = M C
mirauto.0 φ T P
mirauto.1 φ A P
mirauto.2 φ B P
mirauto.3 φ C P
mirauto.4 φ S A B = C
Assertion mirauto φ S X Y = Z

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirauto.m M = S T
8 mirauto.x X = M A
9 mirauto.y Y = M B
10 mirauto.z Z = M C
11 mirauto.0 φ T P
12 mirauto.1 φ A P
13 mirauto.2 φ B P
14 mirauto.3 φ C P
15 mirauto.4 φ S A B = C
16 1 2 3 4 5 6 11 7 mirf φ M : P P
17 16 12 ffvelrnd φ M A P
18 8 17 eqeltrid φ X P
19 eqid S X = S X
20 16 13 ffvelrnd φ M B P
21 9 20 eqeltrid φ Y P
22 16 14 ffvelrnd φ M C P
23 10 22 eqeltrid φ Z P
24 15 14 eqeltrd φ S A B P
25 eqid S A = S A
26 1 2 3 4 5 6 12 25 13 mircgr φ A - ˙ S A B = A - ˙ B
27 1 2 3 4 5 6 11 7 12 24 12 13 26 mircgrs φ M A - ˙ M S A B = M A - ˙ M B
28 8 a1i φ X = M A
29 15 fveq2d φ M S A B = M C
30 10 29 eqtr4id φ Z = M S A B
31 28 30 oveq12d φ X - ˙ Z = M A - ˙ M S A B
32 8 9 oveq12i X - ˙ Y = M A - ˙ M B
33 32 a1i φ X - ˙ Y = M A - ˙ M B
34 27 31 33 3eqtr4d φ X - ˙ Z = X - ˙ Y
35 1 2 3 4 5 6 12 25 13 mirbtwn φ A S A B I B
36 15 oveq1d φ S A B I B = C I B
37 35 36 eleqtrd φ A C I B
38 1 2 3 4 5 6 11 7 14 12 13 37 mirbtwni φ M A M C I M B
39 10 9 oveq12i Z I Y = M C I M B
40 38 8 39 3eltr4g φ X Z I Y
41 1 2 3 4 5 6 18 19 21 23 34 40 ismir φ Z = S X Y
42 41 eqcomd φ S X Y = Z