Metamath Proof Explorer


Theorem mirbtwn

Description: Property of the image by the point inversion function. Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirfv.b φ B P
Assertion mirbtwn φ A M B I B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirfv.b φ B P
10 1 2 3 4 5 6 7 8 9 mirfv φ M B = ι z P | A - ˙ z = A - ˙ B A z I B
11 1 2 3 6 9 7 mirreu3 φ ∃! z P A - ˙ z = A - ˙ B A z I B
12 riotacl2 ∃! z P A - ˙ z = A - ˙ B A z I B ι z P | A - ˙ z = A - ˙ B A z I B z P | A - ˙ z = A - ˙ B A z I B
13 11 12 syl φ ι z P | A - ˙ z = A - ˙ B A z I B z P | A - ˙ z = A - ˙ B A z I B
14 10 13 eqeltrd φ M B z P | A - ˙ z = A - ˙ B A z I B
15 oveq2 z = M B A - ˙ z = A - ˙ M B
16 15 eqeq1d z = M B A - ˙ z = A - ˙ B A - ˙ M B = A - ˙ B
17 oveq1 z = M B z I B = M B I B
18 17 eleq2d z = M B A z I B A M B I B
19 16 18 anbi12d z = M B A - ˙ z = A - ˙ B A z I B A - ˙ M B = A - ˙ B A M B I B
20 19 elrab M B z P | A - ˙ z = A - ˙ B A z I B M B P A - ˙ M B = A - ˙ B A M B I B
21 14 20 sylib φ M B P A - ˙ M B = A - ˙ B A M B I B
22 21 simprrd φ A M B I B