Metamath Proof Explorer


Theorem mirbtwni

Description: Point inversion preserves betweenness, first half of Theorem 7.15 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
miriso.1 φ X P
miriso.2 φ Y P
mirbtwni.z φ Z P
mirbtwni.b φ Y X I Z
Assertion mirbtwni φ M Y M X I M Z

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 miriso.1 φ X P
10 miriso.2 φ Y P
11 mirbtwni.z φ Z P
12 mirbtwni.b φ Y X I Z
13 eqid 𝒢 G = 𝒢 G
14 1 2 3 4 5 6 7 8 mirf φ M : P P
15 14 9 ffvelrnd φ M X P
16 14 10 ffvelrnd φ M Y P
17 14 11 ffvelrnd φ M Z P
18 1 2 3 4 5 6 7 8 9 10 miriso φ M X - ˙ M Y = X - ˙ Y
19 18 eqcomd φ X - ˙ Y = M X - ˙ M Y
20 1 2 3 4 5 6 7 8 10 11 miriso φ M Y - ˙ M Z = Y - ˙ Z
21 20 eqcomd φ Y - ˙ Z = M Y - ˙ M Z
22 1 2 3 4 5 6 7 8 11 9 miriso φ M Z - ˙ M X = Z - ˙ X
23 22 eqcomd φ Z - ˙ X = M Z - ˙ M X
24 1 2 13 6 9 10 11 15 16 17 19 21 23 trgcgr φ ⟨“ XYZ ”⟩ 𝒢 G ⟨“ M X M Y M Z ”⟩
25 1 2 3 13 6 9 10 11 15 16 17 24 12 tgbtwnxfr φ M Y M X I M Z