Metamath Proof Explorer


Theorem mircgrs

Description: Point inversion preserves congruence. Theorem 7.16 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
miriso.1 φ X P
miriso.2 φ Y P
mircgrs.z φ Z P
mircgrs.t φ T P
mircgrs.e φ X - ˙ Y = Z - ˙ T
Assertion mircgrs φ M X - ˙ M Y = M Z - ˙ M T

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 miriso.1 φ X P
10 miriso.2 φ Y P
11 mircgrs.z φ Z P
12 mircgrs.t φ T P
13 mircgrs.e φ X - ˙ Y = Z - ˙ T
14 1 2 3 4 5 6 7 8 9 10 miriso φ M X - ˙ M Y = X - ˙ Y
15 1 2 3 4 5 6 7 8 11 12 miriso φ M Z - ˙ M T = Z - ˙ T
16 13 14 15 3eqtr4d φ M X - ˙ M Y = M Z - ˙ M T