Metamath Proof Explorer


Theorem mircinv

Description: The center point is invariant of a point inversion. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
Assertion mircinv φ M A = A

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 eqid A = A
10 1 2 3 4 5 6 7 8 7 mirinv φ M A = A A = A
11 9 10 mpbiri φ M A = A