Metamath Proof Explorer


Theorem mircl

Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mircl.x φ X P
Assertion mircl φ M X P

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mircl.x φ X P
10 1 2 3 4 5 6 7 8 mirf φ M : P P
11 10 9 ffvelrnd φ M X P