Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Point inversions
mircom
Next ⟩
mirreu
Metamath Proof Explorer
Ascii
Unicode
Theorem
mircom
Description:
Variation on
mirmir
.
(Contributed by
Thierry Arnoux
, 10-Nov-2019)
Ref
Expression
Hypotheses
mirval.p
⊢
P
=
Base
G
mirval.d
⊢
-
˙
=
dist
⁡
G
mirval.i
⊢
I
=
Itv
⁡
G
mirval.l
⊢
L
=
Line
𝒢
⁡
G
mirval.s
⊢
S
=
pInv
𝒢
⁡
G
mirval.g
⊢
φ
→
G
∈
𝒢
Tarski
mirval.a
⊢
φ
→
A
∈
P
mirfv.m
⊢
M
=
S
⁡
A
mirmir.b
⊢
φ
→
B
∈
P
mircom.1
⊢
φ
→
M
⁡
B
=
C
Assertion
mircom
⊢
φ
→
M
⁡
C
=
B
Proof
Step
Hyp
Ref
Expression
1
mirval.p
⊢
P
=
Base
G
2
mirval.d
⊢
-
˙
=
dist
⁡
G
3
mirval.i
⊢
I
=
Itv
⁡
G
4
mirval.l
⊢
L
=
Line
𝒢
⁡
G
5
mirval.s
⊢
S
=
pInv
𝒢
⁡
G
6
mirval.g
⊢
φ
→
G
∈
𝒢
Tarski
7
mirval.a
⊢
φ
→
A
∈
P
8
mirfv.m
⊢
M
=
S
⁡
A
9
mirmir.b
⊢
φ
→
B
∈
P
10
mircom.1
⊢
φ
→
M
⁡
B
=
C
11
10
fveq2d
⊢
φ
→
M
⁡
M
⁡
B
=
M
⁡
C
12
1
2
3
4
5
6
7
8
9
mirmir
⊢
φ
→
M
⁡
M
⁡
B
=
B
13
11
12
eqtr3d
⊢
φ
→
M
⁡
C
=
B