Metamath Proof Explorer


Theorem mircom

Description: Variation on mirmir . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirmir.b φ B P
mircom.1 φ M B = C
Assertion mircom φ M C = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirmir.b φ B P
10 mircom.1 φ M B = C
11 10 fveq2d φ M M B = M C
12 1 2 3 4 5 6 7 8 9 mirmir φ M M B = B
13 11 12 eqtr3d φ M C = B