| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|
| 2 |
|
mirval.d |
|
| 3 |
|
mirval.i |
|
| 4 |
|
mirval.l |
|
| 5 |
|
mirval.s |
|
| 6 |
|
mirval.g |
|
| 7 |
|
mirconn.m |
|
| 8 |
|
mirconn.a |
|
| 9 |
|
mirconn.x |
|
| 10 |
|
mirconn.y |
|
| 11 |
|
mirconn.1 |
|
| 12 |
6
|
adantr |
|
| 13 |
9
|
adantr |
|
| 14 |
8
|
adantr |
|
| 15 |
1 2 3 4 5 6 8 7 10
|
mircl |
|
| 16 |
15
|
adantr |
|
| 17 |
10
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
1 2 3 4 5 6 8 7 10
|
mirbtwn |
|
| 20 |
19
|
adantr |
|
| 21 |
1 2 3 12 13 14 16 17 18 20
|
tgbtwnintr |
|
| 22 |
1 2 3 6 9 8
|
tgbtwntriv2 |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
24
|
fveq2d |
|
| 26 |
1 2 3 4 5 6 8 7
|
mircinv |
|
| 27 |
26
|
adantr |
|
| 28 |
25 27
|
eqtrd |
|
| 29 |
28
|
oveq2d |
|
| 30 |
23 29
|
eleqtrrd |
|
| 31 |
30
|
adantlr |
|
| 32 |
6
|
ad2antrr |
|
| 33 |
9
|
ad2antrr |
|
| 34 |
10
|
ad2antrr |
|
| 35 |
8
|
ad2antrr |
|
| 36 |
15
|
ad2antrr |
|
| 37 |
|
simpr |
|
| 38 |
|
simplr |
|
| 39 |
1 2 3 32 35 34 33 38
|
tgbtwncom |
|
| 40 |
1 2 3 6 15 8 10 19
|
tgbtwncom |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
1 2 3 32 33 34 35 36 37 39 41
|
tgbtwnouttr2 |
|
| 43 |
31 42
|
pm2.61dane |
|
| 44 |
21 43 11
|
mpjaodan |
|