Metamath Proof Explorer


Theorem mirf1o

Description: The point inversion function M is a bijection. Theorem 7.11 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
Assertion mirf1o φ M : P 1-1 onto P

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 1 2 3 4 5 6 7 8 mirf φ M : P P
10 9 ffnd φ M Fn P
11 6 adantr φ a P G 𝒢 Tarski
12 7 adantr φ a P A P
13 simpr φ a P a P
14 1 2 3 4 5 11 12 8 13 mirmir φ a P M M a = a
15 14 ralrimiva φ a P M M a = a
16 nvocnv M : P P a P M M a = a M -1 = M
17 9 15 16 syl2anc φ M -1 = M
18 nvof1o M Fn P M -1 = M M : P 1-1 onto P
19 10 17 18 syl2anc φ M : P 1-1 onto P