Metamath Proof Explorer


Theorem mirhl2

Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirhl.m M = S A
mirhl.k K = hl 𝒢 G
mirhl.a φ A P
mirhl.x φ X P
mirhl.y φ Y P
mirhl.z φ Z P
mirhl2.1 φ X A
mirhl2.2 φ Y A
mirhl2.3 φ A X I M Y
Assertion mirhl2 φ X K A Y

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirhl.m M = S A
8 mirhl.k K = hl 𝒢 G
9 mirhl.a φ A P
10 mirhl.x φ X P
11 mirhl.y φ Y P
12 mirhl.z φ Z P
13 mirhl2.1 φ X A
14 mirhl2.2 φ Y A
15 mirhl2.3 φ A X I M Y
16 1 2 3 4 5 6 9 7 11 mircl φ M Y P
17 1 2 3 4 5 6 9 7 11 14 mirne φ M Y A
18 1 2 3 6 10 9 16 15 tgbtwncom φ A M Y I X
19 1 2 3 4 5 6 9 7 11 mirbtwn φ A M Y I Y
20 1 3 6 16 9 10 11 17 18 19 tgbtwnconn2 φ X A I Y Y A I X
21 1 3 8 10 11 9 6 ishlg φ X K A Y X A Y A X A I Y Y A I X
22 13 14 20 21 mpbir3and φ X K A Y