Metamath Proof Explorer


Theorem mirinv

Description: The only invariant point of a point inversion Theorem 7.3 of Schwabhauser p. 49, Theorem 7.10 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 30-Jul-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirinv.b φ B P
Assertion mirinv φ M B = B A = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirinv.b φ B P
10 6 adantr φ M B = B G 𝒢 Tarski
11 9 adantr φ M B = B B P
12 7 adantr φ M B = B A P
13 1 2 3 4 5 10 12 8 11 mirbtwn φ M B = B A M B I B
14 simpr φ M B = B M B = B
15 14 oveq1d φ M B = B M B I B = B I B
16 13 15 eleqtrd φ M B = B A B I B
17 1 2 3 10 11 12 16 axtgbtwnid φ M B = B B = A
18 17 eqcomd φ M B = B A = B
19 6 adantr φ A = B G 𝒢 Tarski
20 7 adantr φ A = B A P
21 9 adantr φ A = B B P
22 eqidd φ A = B A - ˙ B = A - ˙ B
23 simpr φ A = B A = B
24 1 2 3 19 21 21 tgbtwntriv1 φ A = B B B I B
25 23 24 eqeltrd φ A = B A B I B
26 1 2 3 4 5 19 20 8 21 21 22 25 ismir φ A = B B = M B
27 26 eqcomd φ A = B M B = B
28 18 27 impbida φ M B = B A = B