Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|
2 |
|
mirval.d |
|
3 |
|
mirval.i |
|
4 |
|
mirval.l |
|
5 |
|
mirval.s |
|
6 |
|
mirval.g |
|
7 |
|
mirval.a |
|
8 |
|
mirfv.m |
|
9 |
|
miriso.1 |
|
10 |
|
miriso.2 |
|
11 |
|
simpr |
|
12 |
11
|
oveq1d |
|
13 |
6
|
adantr |
|
14 |
7
|
adantr |
|
15 |
10
|
adantr |
|
16 |
1 2 3 4 5 13 14 8 15
|
mircgr |
|
17 |
9
|
adantr |
|
18 |
11
|
eqcomd |
|
19 |
18
|
oveq2d |
|
20 |
1 2 3 13 14 17
|
tgbtwntriv1 |
|
21 |
1 2 3 4 5 13 14 8 17 14 19 20
|
ismir |
|
22 |
21
|
oveq1d |
|
23 |
12 16 22
|
3eqtr2rd |
|
24 |
6
|
adantr |
|
25 |
24
|
ad2antrr |
|
26 |
25
|
ad6antr |
|
27 |
|
simplr |
|
28 |
27
|
ad6antr |
|
29 |
9
|
adantr |
|
30 |
29
|
ad8antr |
|
31 |
7
|
adantr |
|
32 |
31
|
ad2antrr |
|
33 |
32
|
ad6antr |
|
34 |
10
|
adantr |
|
35 |
34
|
ad2antrr |
|
36 |
35
|
ad6antr |
|
37 |
|
simp-4r |
|
38 |
1 2 3 4 5 24 31 8 29
|
mircl |
|
39 |
38
|
ad2antrr |
|
40 |
39
|
ad6antr |
|
41 |
1 2 3 4 5 24 31 8 34
|
mircl |
|
42 |
41
|
ad8antr |
|
43 |
1 2 3 4 5 26 33 8 30
|
mirbtwn |
|
44 |
|
simp-7r |
|
45 |
44
|
simpld |
|
46 |
1 2 3 26 40 33 30 28 43 45
|
tgbtwnexch3 |
|
47 |
1 2 3 26 33 30 28 46
|
tgbtwncom |
|
48 |
1 2 3 26 40 30 28 45
|
tgbtwncom |
|
49 |
1 2 3 26 40 33 30 43
|
tgbtwncom |
|
50 |
1 2 3 26 28 30 33 40 48 49
|
tgbtwnexch2 |
|
51 |
|
simpllr |
|
52 |
51
|
simpld |
|
53 |
1 2 3 26 28 33 40 37 50 52
|
tgbtwnexch3 |
|
54 |
1 2 3 26 33 40 37 53
|
tgbtwncom |
|
55 |
|
simp-4r |
|
56 |
55
|
ad2antrr |
|
57 |
1 2 3 4 5 26 33 8 36
|
mirbtwn |
|
58 |
|
simp-5r |
|
59 |
58
|
simpld |
|
60 |
1 2 3 26 42 33 36 56 57 59
|
tgbtwnexch3 |
|
61 |
1 2 3 26 33 36 56 60
|
tgbtwncom |
|
62 |
1 2 3 4 5 26 33 8 30
|
mircgr |
|
63 |
58
|
simprd |
|
64 |
1 2 3 26 36 56 30 33 63
|
tgcgrcomlr |
|
65 |
62 64
|
eqtr4d |
|
66 |
51
|
simprd |
|
67 |
1 2 3 26 33 40 37 56 36 33 53 61 65 66
|
tgcgrextend |
|
68 |
44
|
simprd |
|
69 |
68
|
eqcomd |
|
70 |
1 2 3 26 56 36 33 33 30 28 61 46 64 69
|
tgcgrextend |
|
71 |
67 70
|
eqtr2d |
|
72 |
1 2 3 26 33 28 33 37 71
|
tgcgrcomlr |
|
73 |
62
|
eqcomd |
|
74 |
1 2 3 26 33 30 33 40 73
|
tgcgrcomlr |
|
75 |
|
simplr |
|
76 |
1 2 3 26 42 36 56 59
|
tgbtwncom |
|
77 |
1 2 3 26 42 33 36 57
|
tgbtwncom |
|
78 |
1 2 3 26 56 36 33 42 76 77
|
tgbtwnexch2 |
|
79 |
|
simpr |
|
80 |
79
|
simpld |
|
81 |
1 2 3 26 56 33 42 75 78 80
|
tgbtwnexch3 |
|
82 |
1 2 3 26 33 42 75 81
|
tgbtwncom |
|
83 |
1 2 3 26 30 28 36 33 68
|
tgcgrcomlr |
|
84 |
1 2 3 4 5 26 33 8 36
|
mircgr |
|
85 |
83 84
|
eqtr4d |
|
86 |
79
|
simprd |
|
87 |
86
|
eqcomd |
|
88 |
1 2 3 26 28 30 33 33 42 75 47 81 85 87
|
tgcgrextend |
|
89 |
1 2 3 26 33 75
|
axtgcgrrflx |
|
90 |
88 89
|
eqtrd |
|
91 |
1 2 3 26 28 33 75 33 90
|
tgcgrcomlr |
|
92 |
70 91 89
|
3eqtrd |
|
93 |
1 2 3 26 33 42 33 36 84
|
tgcgrcomlr |
|
94 |
93
|
eqcomd |
|
95 |
1 2 3 26 75 37
|
axtgcgrrflx |
|
96 |
|
simp-9r |
|
97 |
96
|
neneqd |
|
98 |
26
|
adantr |
|
99 |
33
|
adantr |
|
100 |
30
|
adantr |
|
101 |
46
|
adantr |
|
102 |
|
simpr |
|
103 |
102
|
oveq2d |
|
104 |
101 103
|
eleqtrd |
|
105 |
1 2 3 98 99 100 104
|
axtgbtwnid |
|
106 |
105
|
eqcomd |
|
107 |
97 106
|
mtand |
|
108 |
107
|
neqned |
|
109 |
1 2 3 26 28 33 40 37 50 52
|
tgbtwnexch |
|
110 |
1 2 3 26 56 33 42 75 78 80
|
tgbtwnexch |
|
111 |
1 2 3 26 56 33 75 110
|
tgbtwncom |
|
112 |
1 2 3 26 56 33
|
axtgcgrrflx |
|
113 |
67 112
|
eqtrd |
|
114 |
1 2 3 26 28 75
|
axtgcgrrflx |
|
115 |
91
|
eqcomd |
|
116 |
1 2 3 26 28 33 37 75 33 56 75 28 108 109 111 90 113 114 115
|
axtg5seg |
|
117 |
95 116
|
eqtr2d |
|
118 |
1 2 3 26 56 36 33 28 75 42 33 37 61 82 92 94 117 71
|
tgifscgr |
|
119 |
1 2 3 26 36 28 42 37 118
|
tgcgrcomlr |
|
120 |
84
|
eqcomd |
|
121 |
1 2 3 26 28 30 33 36 37 40 33 42 47 54 72 74 119 120
|
tgifscgr |
|
122 |
121
|
eqcomd |
|
123 |
|
simp-6l |
|
124 |
|
simpllr |
|
125 |
24
|
ad2antrr |
|
126 |
|
simplr |
|
127 |
41
|
ad2antrr |
|
128 |
29
|
ad2antrr |
|
129 |
31
|
ad2antrr |
|
130 |
1 2 3 125 126 127 128 129
|
axtgsegcon |
|
131 |
123 55 124 130
|
syl21anc |
|
132 |
122 131
|
r19.29a |
|
133 |
1 2 3 25 27 39 35 32
|
axtgsegcon |
|
134 |
133
|
ad2antrr |
|
135 |
132 134
|
r19.29a |
|
136 |
1 2 3 24 41 34 29 31
|
axtgsegcon |
|
137 |
136
|
ad2antrr |
|
138 |
135 137
|
r19.29a |
|
139 |
1 2 3 24 38 29 34 31
|
axtgsegcon |
|
140 |
138 139
|
r19.29a |
|
141 |
23 140
|
pm2.61dane |
|