Metamath Proof Explorer


Theorem mirln

Description: If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirln.m M = S A
mirln.1 φ D ran L
mirln.a φ A D
mirln.b φ B D
Assertion mirln φ M B D

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirln.m M = S A
8 mirln.1 φ D ran L
9 mirln.a φ A D
10 mirln.b φ B D
11 simpr φ A = B A = B
12 11 fveq2d φ A = B M A = M B
13 6 adantr φ A = B G 𝒢 Tarski
14 1 4 3 6 8 9 tglnpt φ A P
15 14 adantr φ A = B A P
16 1 2 3 4 5 13 15 7 mircinv φ A = B M A = A
17 12 16 eqtr3d φ A = B M B = A
18 9 adantr φ A = B A D
19 17 18 eqeltrd φ A = B M B D
20 6 adantr φ A B G 𝒢 Tarski
21 14 adantr φ A B A P
22 1 4 3 6 8 10 tglnpt φ B P
23 22 adantr φ A B B P
24 1 2 3 4 5 20 21 7 23 mircl φ A B M B P
25 simpr φ A B A B
26 1 2 3 4 5 6 14 7 22 mirbtwn φ A M B I B
27 26 adantr φ A B A M B I B
28 1 3 4 20 21 23 24 25 27 btwnlng2 φ A B M B A L B
29 8 adantr φ A B D ran L
30 9 adantr φ A B A D
31 10 adantr φ A B B D
32 1 3 4 20 21 23 25 25 29 30 31 tglinethru φ A B D = A L B
33 28 32 eleqtrrd φ A B M B D
34 19 33 pm2.61dane φ M B D