Metamath Proof Explorer


Theorem mirmir

Description: The point inversion function is an involution. Theorem 7.7 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirmir.b φ B P
Assertion mirmir φ M M B = B

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirmir.b φ B P
10 1 2 3 4 5 6 7 8 9 mircl φ M B P
11 1 2 3 4 5 6 7 8 9 mircgr φ A - ˙ M B = A - ˙ B
12 11 eqcomd φ A - ˙ B = A - ˙ M B
13 1 2 3 4 5 6 7 8 9 mirbtwn φ A M B I B
14 1 2 3 6 10 7 9 13 tgbtwncom φ A B I M B
15 1 2 3 4 5 6 7 8 10 9 12 14 ismir φ B = M M B
16 15 eqcomd φ M M B = B