Metamath Proof Explorer


Theorem mirne

Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirinv.b φ B P
mirne.1 φ B A
Assertion mirne φ M B A

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirinv.b φ B P
10 mirne.1 φ B A
11 simpr φ M B = A M B = A
12 11 fveq2d φ M B = A M M B = M A
13 1 2 3 4 5 6 7 8 9 mirmir φ M M B = B
14 13 adantr φ M B = A M M B = B
15 eqid A = A
16 1 2 3 4 5 6 7 8 7 mirinv φ M A = A A = A
17 15 16 mpbiri φ M A = A
18 17 adantr φ M B = A M A = A
19 12 14 18 3eqtr3d φ M B = A B = A
20 10 adantr φ M B = A B A
21 20 neneqd φ M B = A ¬ B = A
22 19 21 pm2.65da φ ¬ M B = A
23 22 neqned φ M B A