| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirreu.p |
|
| 2 |
|
mirreu.d |
|
| 3 |
|
mirreu.i |
|
| 4 |
|
mirreu.g |
|
| 5 |
|
mirreu.a |
|
| 6 |
|
mirreu.m |
|
| 7 |
5
|
adantr |
|
| 8 |
|
eqidd |
|
| 9 |
|
simpr |
|
| 10 |
4
|
adantr |
|
| 11 |
1 2 3 10 7 7
|
tgbtwntriv2 |
|
| 12 |
9 11
|
eqeltrrd |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eleq2d |
|
| 17 |
14 16
|
anbi12d |
|
| 18 |
17
|
rspcev |
|
| 19 |
7 8 12 18
|
syl12anc |
|
| 20 |
4
|
ad3antrrr |
|
| 21 |
6
|
ad3antrrr |
|
| 22 |
|
simplrl |
|
| 23 |
|
simprll |
|
| 24 |
|
simpllr |
|
| 25 |
24
|
oveq2d |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
1 2 3 20 21 22 21 26
|
axtgcgrid |
|
| 28 |
|
simplrr |
|
| 29 |
|
simprrl |
|
| 30 |
29 25
|
eqtrd |
|
| 31 |
1 2 3 20 21 28 21 30
|
axtgcgrid |
|
| 32 |
27 31
|
eqtr3d |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
ralrimivva |
|
| 35 |
19 34
|
jca |
|
| 36 |
4
|
adantr |
|
| 37 |
5
|
adantr |
|
| 38 |
6
|
adantr |
|
| 39 |
1 2 3 36 37 38 38 37
|
axtgsegcon |
|
| 40 |
|
ancom |
|
| 41 |
4
|
adantr |
|
| 42 |
5
|
adantr |
|
| 43 |
6
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
1 2 3 41 42 43 44
|
tgbtwncomb |
|
| 46 |
45
|
anbi2d |
|
| 47 |
40 46
|
bitrid |
|
| 48 |
47
|
rexbidva |
|
| 49 |
48
|
adantr |
|
| 50 |
39 49
|
mpbid |
|
| 51 |
4
|
ad3antrrr |
|
| 52 |
6
|
ad3antrrr |
|
| 53 |
5
|
ad3antrrr |
|
| 54 |
|
simplrl |
|
| 55 |
|
simplrr |
|
| 56 |
|
simpllr |
|
| 57 |
|
simprlr |
|
| 58 |
1 2 3 51 54 52 53 57
|
tgbtwncom |
|
| 59 |
|
simprrr |
|
| 60 |
1 2 3 51 55 52 53 59
|
tgbtwncom |
|
| 61 |
|
simprll |
|
| 62 |
|
simprrl |
|
| 63 |
1 2 3 51 52 52 53 53 54 55 56 58 60 61 62
|
tgsegconeq |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
ralrimivva |
|
| 66 |
50 65
|
jca |
|
| 67 |
35 66
|
pm2.61dane |
|
| 68 |
|
oveq2 |
|
| 69 |
68
|
eqeq1d |
|
| 70 |
|
oveq1 |
|
| 71 |
70
|
eleq2d |
|
| 72 |
69 71
|
anbi12d |
|
| 73 |
72
|
reu4 |
|
| 74 |
67 73
|
sylibr |
|