Metamath Proof Explorer


Theorem mirtrcgr

Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirtrcgr.e ˙ = 𝒢 G
mirtrcgr.m M = S B
mirtrcgr.n N = S Y
mirtrcgr.a φ A P
mirtrcgr.b φ B P
mirtrcgr.x φ X P
mirtrcgr.y φ Y P
mirtrcgr.c φ C P
mirtrcgr.z φ Z P
mirtrcgr.1 φ A B
mirtrcgr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ XYZ ”⟩
Assertion mirtrcgr φ ⟨“ M A BC ”⟩ ˙ ⟨“ N X YZ ”⟩

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirtrcgr.e ˙ = 𝒢 G
8 mirtrcgr.m M = S B
9 mirtrcgr.n N = S Y
10 mirtrcgr.a φ A P
11 mirtrcgr.b φ B P
12 mirtrcgr.x φ X P
13 mirtrcgr.y φ Y P
14 mirtrcgr.c φ C P
15 mirtrcgr.z φ Z P
16 mirtrcgr.1 φ A B
17 mirtrcgr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ XYZ ”⟩
18 1 2 3 4 5 6 11 8 10 mircl φ M A P
19 1 2 3 4 5 6 13 9 12 mircl φ N X P
20 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp1 φ A - ˙ B = X - ˙ Y
21 1 2 3 6 10 11 12 13 20 tgcgrcomlr φ B - ˙ A = Y - ˙ X
22 1 2 3 4 5 6 11 8 10 mircgr φ B - ˙ M A = B - ˙ A
23 1 2 3 4 5 6 13 9 12 mircgr φ Y - ˙ N X = Y - ˙ X
24 21 22 23 3eqtr4d φ B - ˙ M A = Y - ˙ N X
25 1 2 3 6 11 18 13 19 24 tgcgrcomlr φ M A - ˙ B = N X - ˙ Y
26 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp2 φ B - ˙ C = Y - ˙ Z
27 1 2 3 4 5 6 11 8 10 mirbtwn φ B M A I A
28 1 4 3 6 18 10 11 27 btwncolg1 φ B M A L A M A = A
29 1 4 3 6 18 10 11 28 colcom φ B A L M A A = M A
30 1 2 3 4 5 6 7 8 9 10 11 12 13 20 mircgrextend φ A - ˙ M A = X - ˙ N X
31 1 2 3 6 10 18 12 19 30 tgcgrcomlr φ M A - ˙ A = N X - ˙ X
32 1 2 7 6 10 11 18 12 13 19 20 24 31 trgcgr φ ⟨“ AB M A ”⟩ ˙ ⟨“ XY N X ”⟩
33 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp3 φ C - ˙ A = Z - ˙ X
34 1 2 3 6 14 10 15 12 33 tgcgrcomlr φ A - ˙ C = X - ˙ Z
35 1 4 3 6 10 11 18 7 12 13 2 14 19 15 29 32 34 26 16 tgfscgr φ M A - ˙ C = N X - ˙ Z
36 1 2 3 6 18 14 19 15 35 tgcgrcomlr φ C - ˙ M A = Z - ˙ N X
37 1 2 7 6 18 11 14 19 13 15 25 26 36 trgcgr φ ⟨“ M A BC ”⟩ ˙ ⟨“ N X YZ ”⟩