Metamath Proof Explorer


Theorem mirtrcgr

Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirtrcgr.e ˙=𝒢G
mirtrcgr.m M=SB
mirtrcgr.n N=SY
mirtrcgr.a φAP
mirtrcgr.b φBP
mirtrcgr.x φXP
mirtrcgr.y φYP
mirtrcgr.c φCP
mirtrcgr.z φZP
mirtrcgr.1 φAB
mirtrcgr.2 φ⟨“ABC”⟩˙⟨“XYZ”⟩
Assertion mirtrcgr φ⟨“MABC”⟩˙⟨“NXYZ”⟩

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirtrcgr.e ˙=𝒢G
8 mirtrcgr.m M=SB
9 mirtrcgr.n N=SY
10 mirtrcgr.a φAP
11 mirtrcgr.b φBP
12 mirtrcgr.x φXP
13 mirtrcgr.y φYP
14 mirtrcgr.c φCP
15 mirtrcgr.z φZP
16 mirtrcgr.1 φAB
17 mirtrcgr.2 φ⟨“ABC”⟩˙⟨“XYZ”⟩
18 1 2 3 4 5 6 11 8 10 mircl φMAP
19 1 2 3 4 5 6 13 9 12 mircl φNXP
20 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp1 φA-˙B=X-˙Y
21 1 2 3 6 10 11 12 13 20 tgcgrcomlr φB-˙A=Y-˙X
22 1 2 3 4 5 6 11 8 10 mircgr φB-˙MA=B-˙A
23 1 2 3 4 5 6 13 9 12 mircgr φY-˙NX=Y-˙X
24 21 22 23 3eqtr4d φB-˙MA=Y-˙NX
25 1 2 3 6 11 18 13 19 24 tgcgrcomlr φMA-˙B=NX-˙Y
26 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp2 φB-˙C=Y-˙Z
27 1 2 3 4 5 6 11 8 10 mirbtwn φBMAIA
28 1 4 3 6 18 10 11 27 btwncolg1 φBMALAMA=A
29 1 4 3 6 18 10 11 28 colcom φBALMAA=MA
30 1 2 3 4 5 6 7 8 9 10 11 12 13 20 mircgrextend φA-˙MA=X-˙NX
31 1 2 3 6 10 18 12 19 30 tgcgrcomlr φMA-˙A=NX-˙X
32 1 2 7 6 10 11 18 12 13 19 20 24 31 trgcgr φ⟨“ABMA”⟩˙⟨“XYNX”⟩
33 1 2 3 7 6 10 11 14 12 13 15 17 cgr3simp3 φC-˙A=Z-˙X
34 1 2 3 6 14 10 15 12 33 tgcgrcomlr φA-˙C=X-˙Z
35 1 4 3 6 10 11 18 7 12 13 2 14 19 15 29 32 34 26 16 tgfscgr φMA-˙C=NX-˙Z
36 1 2 3 6 18 14 19 15 35 tgcgrcomlr φC-˙MA=Z-˙NX
37 1 2 7 6 18 11 14 19 13 15 25 26 36 trgcgr φ⟨“MABC”⟩˙⟨“NXYZ”⟩