Metamath Proof Explorer


Theorem mndass

Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b B = Base G
mndcl.p + ˙ = + G
Assertion mndass G Mnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 mndcl.b B = Base G
2 mndcl.p + ˙ = + G
3 mndsgrp Could not format ( G e. Mnd -> G e. Smgrp ) : No typesetting found for |- ( G e. Mnd -> G e. Smgrp ) with typecode |-
4 1 2 sgrpass Could not format ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) : No typesetting found for |- ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) with typecode |-
5 3 4 sylan G Mnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z