Metamath Proof Explorer


Theorem mndcl

Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b B = Base G
mndcl.p + ˙ = + G
Assertion mndcl G Mnd X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 mndcl.b B = Base G
2 mndcl.p + ˙ = + G
3 mndmgm G Mnd G Mgm
4 1 2 mgmcl G Mgm X B Y B X + ˙ Y B
5 3 4 syl3an1 G Mnd X B Y B X + ˙ Y B