Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
mndcl
Metamath Proof Explorer
Description: Closure of the operation of a monoid. (Contributed by NM , 14-Aug-2011)
(Revised by Mario Carneiro , 6-Jan-2015) (Proof shortened by AV , 8-Feb-2020)
Ref
Expression
Hypotheses
mndcl.b
⊢ B = Base G
mndcl.p
⊢ + ˙ = + G
Assertion
mndcl
⊢ G ∈ Mnd ∧ X ∈ B ∧ Y ∈ B → X + ˙ Y ∈ B
Proof
Step
Hyp
Ref
Expression
1
mndcl.b
⊢ B = Base G
2
mndcl.p
⊢ + ˙ = + G
3
mndmgm
⊢ G ∈ Mnd → G ∈ Mgm
4
1 2
mgmcl
⊢ G ∈ Mgm ∧ X ∈ B ∧ Y ∈ B → X + ˙ Y ∈ B
5
3 4
syl3an1
⊢ G ∈ Mnd ∧ X ∈ B ∧ Y ∈ B → X + ˙ Y ∈ B