Metamath Proof Explorer


Theorem mndfo

Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndfo.b B = Base G
mndfo.p + ˙ = + G
Assertion mndfo G Mnd + ˙ Fn B × B + ˙ : B × B onto B

Proof

Step Hyp Ref Expression
1 mndfo.b B = Base G
2 mndfo.p + ˙ = + G
3 eqid + 𝑓 G = + 𝑓 G
4 1 3 mndpfo G Mnd + 𝑓 G : B × B onto B
5 4 adantr G Mnd + ˙ Fn B × B + 𝑓 G : B × B onto B
6 1 2 3 plusfeq + ˙ Fn B × B + 𝑓 G = + ˙
7 6 eqcomd + ˙ Fn B × B + ˙ = + 𝑓 G
8 7 adantl G Mnd + ˙ Fn B × B + ˙ = + 𝑓 G
9 foeq1 + ˙ = + 𝑓 G + ˙ : B × B onto B + 𝑓 G : B × B onto B
10 8 9 syl G Mnd + ˙ Fn B × B + ˙ : B × B onto B + 𝑓 G : B × B onto B
11 5 10 mpbird G Mnd + ˙ Fn B × B + ˙ : B × B onto B