Metamath Proof Explorer


Theorem mndid

Description: A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011)

Ref Expression
Hypotheses mndcl.b B = Base G
mndcl.p + ˙ = + G
Assertion mndid G Mnd u B x B u + ˙ x = x x + ˙ u = x

Proof

Step Hyp Ref Expression
1 mndcl.b B = Base G
2 mndcl.p + ˙ = + G
3 1 2 ismnd G Mnd x B y B x + ˙ y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z u B x B u + ˙ x = x x + ˙ u = x
4 3 simprbi G Mnd u B x B u + ˙ x = x x + ˙ u = x