Metamath Proof Explorer


Theorem mndidcl

Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses mndidcl.b B = Base G
mndidcl.o 0 ˙ = 0 G
Assertion mndidcl G Mnd 0 ˙ B

Proof

Step Hyp Ref Expression
1 mndidcl.b B = Base G
2 mndidcl.o 0 ˙ = 0 G
3 eqid + G = + G
4 1 3 mndid G Mnd x B y B x + G y = y y + G x = y
5 1 2 3 4 mgmidcl G Mnd 0 ˙ B