Metamath Proof Explorer


Theorem mndideu

Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses mndcl.b B = Base G
mndcl.p + ˙ = + G
Assertion mndideu G Mnd ∃! u B x B u + ˙ x = x x + ˙ u = x

Proof

Step Hyp Ref Expression
1 mndcl.b B = Base G
2 mndcl.p + ˙ = + G
3 1 2 mndid G Mnd u B x B u + ˙ x = x x + ˙ u = x
4 mgmidmo * u B x B u + ˙ x = x x + ˙ u = x
5 reu5 ∃! u B x B u + ˙ x = x x + ˙ u = x u B x B u + ˙ x = x x + ˙ u = x * u B x B u + ˙ x = x x + ˙ u = x
6 3 4 5 sylanblrc G Mnd ∃! u B x B u + ˙ x = x x + ˙ u = x