Metamath Proof Explorer


Theorem mndlid

Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses mndlrid.b B = Base G
mndlrid.p + ˙ = + G
mndlrid.o 0 ˙ = 0 G
Assertion mndlid G Mnd X B 0 ˙ + ˙ X = X

Proof

Step Hyp Ref Expression
1 mndlrid.b B = Base G
2 mndlrid.p + ˙ = + G
3 mndlrid.o 0 ˙ = 0 G
4 1 2 3 mndlrid G Mnd X B 0 ˙ + ˙ X = X X + ˙ 0 ˙ = X
5 4 simpld G Mnd X B 0 ˙ + ˙ X = X