Metamath Proof Explorer


Theorem mndmgm

Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)

Ref Expression
Assertion mndmgm M Mnd M Mgm

Proof

Step Hyp Ref Expression
1 mndsgrp Could not format ( M e. Mnd -> M e. Smgrp ) : No typesetting found for |- ( M e. Mnd -> M e. Smgrp ) with typecode |-
2 sgrpmgm Could not format ( M e. Smgrp -> M e. Mgm ) : No typesetting found for |- ( M e. Smgrp -> M e. Mgm ) with typecode |-
3 1 2 syl M Mnd M Mgm