Metamath Proof Explorer


Theorem mndodcongi

Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 1 0 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion mndodcongi GMndAXM0N0OAMNM·˙A=N·˙A

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 1 2 3 4 mndodcong GMndAXM0N0OAOAMNM·˙A=N·˙A
6 5 biimpd GMndAXM0N0OAOAMNM·˙A=N·˙A
7 6 3expia GMndAXM0N0OAOAMNM·˙A=N·˙A
8 7 3impa GMndAXM0N0OAOAMNM·˙A=N·˙A
9 nn0z M0M
10 nn0z N0N
11 zsubcl MNMN
12 9 10 11 syl2an M0N0MN
13 12 3ad2ant3 GMndAXM0N0MN
14 0dvds MN0MNMN=0
15 13 14 syl GMndAXM0N00MNMN=0
16 nn0cn M0M
17 nn0cn N0N
18 subeq0 MNMN=0M=N
19 16 17 18 syl2an M0N0MN=0M=N
20 19 3ad2ant3 GMndAXM0N0MN=0M=N
21 oveq1 M=NM·˙A=N·˙A
22 20 21 biimtrdi GMndAXM0N0MN=0M·˙A=N·˙A
23 15 22 sylbid GMndAXM0N00MNM·˙A=N·˙A
24 breq1 OA=0OAMN0MN
25 24 imbi1d OA=0OAMNM·˙A=N·˙A0MNM·˙A=N·˙A
26 23 25 syl5ibrcom GMndAXM0N0OA=0OAMNM·˙A=N·˙A
27 1 2 odcl AXOA0
28 27 3ad2ant2 GMndAXM0N0OA0
29 elnn0 OA0OAOA=0
30 28 29 sylib GMndAXM0N0OAOA=0
31 8 26 30 mpjaod GMndAXM0N0OAMNM·˙A=N·˙A