| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
1 2 3 4
|
mndodcong |
|
| 6 |
5
|
biimpd |
|
| 7 |
6
|
3expia |
|
| 8 |
7
|
3impa |
|
| 9 |
|
nn0z |
|
| 10 |
|
nn0z |
|
| 11 |
|
zsubcl |
|
| 12 |
9 10 11
|
syl2an |
|
| 13 |
12
|
3ad2ant3 |
|
| 14 |
|
0dvds |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
nn0cn |
|
| 17 |
|
nn0cn |
|
| 18 |
|
subeq0 |
|
| 19 |
16 17 18
|
syl2an |
|
| 20 |
19
|
3ad2ant3 |
|
| 21 |
|
oveq1 |
|
| 22 |
20 21
|
biimtrdi |
|
| 23 |
15 22
|
sylbid |
|
| 24 |
|
breq1 |
|
| 25 |
24
|
imbi1d |
|
| 26 |
23 25
|
syl5ibrcom |
|
| 27 |
1 2
|
odcl |
|
| 28 |
27
|
3ad2ant2 |
|
| 29 |
|
elnn0 |
|
| 30 |
28 29
|
sylib |
|
| 31 |
8 26 30
|
mpjaod |
|