Metamath Proof Explorer


Theorem mndoissmgrpOLD

Description: Obsolete version of mndsgrp as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion mndoissmgrpOLD G MndOp G SemiGrp

Proof

Step Hyp Ref Expression
1 elin G SemiGrp ExId G SemiGrp G ExId
2 1 simplbi G SemiGrp ExId G SemiGrp
3 df-mndo MndOp = SemiGrp ExId
4 2 3 eleq2s G MndOp G SemiGrp