Metamath Proof Explorer


Theorem mndpfo

Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 11-Oct-2013) (Revised by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndpf.b B = Base G
mndpf.p ˙ = + 𝑓 G
Assertion mndpfo G Mnd ˙ : B × B onto B

Proof

Step Hyp Ref Expression
1 mndpf.b B = Base G
2 mndpf.p ˙ = + 𝑓 G
3 1 2 mndplusf G Mnd ˙ : B × B B
4 simpr G Mnd x B x B
5 eqid 0 G = 0 G
6 1 5 mndidcl G Mnd 0 G B
7 6 adantr G Mnd x B 0 G B
8 eqid + G = + G
9 1 8 5 mndrid G Mnd x B x + G 0 G = x
10 9 eqcomd G Mnd x B x = x + G 0 G
11 rspceov x B 0 G B x = x + G 0 G y B z B x = y + G z
12 4 7 10 11 syl3anc G Mnd x B y B z B x = y + G z
13 1 8 2 plusfval y B z B y ˙ z = y + G z
14 13 eqeq2d y B z B x = y ˙ z x = y + G z
15 14 2rexbiia y B z B x = y ˙ z y B z B x = y + G z
16 12 15 sylibr G Mnd x B y B z B x = y ˙ z
17 16 ralrimiva G Mnd x B y B z B x = y ˙ z
18 foov ˙ : B × B onto B ˙ : B × B B x B y B z B x = y ˙ z
19 3 17 18 sylanbrc G Mnd ˙ : B × B onto B