Metamath Proof Explorer


Theorem mndpluscn

Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017)

Ref Expression
Hypotheses mndpluscn.f F J Homeo K
mndpluscn.p + ˙ : B × B B
mndpluscn.t ˙ : C × C C
mndpluscn.j J TopOn B
mndpluscn.k K TopOn C
mndpluscn.h x B y B F x + ˙ y = F x ˙ F y
mndpluscn.o + ˙ J × t J Cn J
Assertion mndpluscn ˙ K × t K Cn K

Proof

Step Hyp Ref Expression
1 mndpluscn.f F J Homeo K
2 mndpluscn.p + ˙ : B × B B
3 mndpluscn.t ˙ : C × C C
4 mndpluscn.j J TopOn B
5 mndpluscn.k K TopOn C
6 mndpluscn.h x B y B F x + ˙ y = F x ˙ F y
7 mndpluscn.o + ˙ J × t J Cn J
8 ffn ˙ : C × C C ˙ Fn C × C
9 fnov ˙ Fn C × C ˙ = a C , b C a ˙ b
10 9 biimpi ˙ Fn C × C ˙ = a C , b C a ˙ b
11 3 8 10 mp2b ˙ = a C , b C a ˙ b
12 4 toponunii B = J
13 5 toponunii C = K
14 12 13 hmeof1o F J Homeo K F : B 1-1 onto C
15 1 14 ax-mp F : B 1-1 onto C
16 f1ocnvdm F : B 1-1 onto C a C F -1 a B
17 15 16 mpan a C F -1 a B
18 f1ocnvdm F : B 1-1 onto C b C F -1 b B
19 15 18 mpan b C F -1 b B
20 17 19 anim12i a C b C F -1 a B F -1 b B
21 6 rgen2 x B y B F x + ˙ y = F x ˙ F y
22 fvoveq1 x = F -1 a F x + ˙ y = F F -1 a + ˙ y
23 fveq2 x = F -1 a F x = F F -1 a
24 23 oveq1d x = F -1 a F x ˙ F y = F F -1 a ˙ F y
25 22 24 eqeq12d x = F -1 a F x + ˙ y = F x ˙ F y F F -1 a + ˙ y = F F -1 a ˙ F y
26 oveq2 y = F -1 b F -1 a + ˙ y = F -1 a + ˙ F -1 b
27 26 fveq2d y = F -1 b F F -1 a + ˙ y = F F -1 a + ˙ F -1 b
28 fveq2 y = F -1 b F y = F F -1 b
29 28 oveq2d y = F -1 b F F -1 a ˙ F y = F F -1 a ˙ F F -1 b
30 27 29 eqeq12d y = F -1 b F F -1 a + ˙ y = F F -1 a ˙ F y F F -1 a + ˙ F -1 b = F F -1 a ˙ F F -1 b
31 25 30 rspc2va F -1 a B F -1 b B x B y B F x + ˙ y = F x ˙ F y F F -1 a + ˙ F -1 b = F F -1 a ˙ F F -1 b
32 20 21 31 sylancl a C b C F F -1 a + ˙ F -1 b = F F -1 a ˙ F F -1 b
33 f1ocnvfv2 F : B 1-1 onto C a C F F -1 a = a
34 15 33 mpan a C F F -1 a = a
35 f1ocnvfv2 F : B 1-1 onto C b C F F -1 b = b
36 15 35 mpan b C F F -1 b = b
37 34 36 oveqan12d a C b C F F -1 a ˙ F F -1 b = a ˙ b
38 32 37 eqtr2d a C b C a ˙ b = F F -1 a + ˙ F -1 b
39 38 mpoeq3ia a C , b C a ˙ b = a C , b C F F -1 a + ˙ F -1 b
40 11 39 eqtri ˙ = a C , b C F F -1 a + ˙ F -1 b
41 5 a1i K TopOn C
42 41 41 cnmpt1st a C , b C a K × t K Cn K
43 hmeocnvcn F J Homeo K F -1 K Cn J
44 1 43 mp1i F -1 K Cn J
45 41 41 42 44 cnmpt21f a C , b C F -1 a K × t K Cn J
46 41 41 cnmpt2nd a C , b C b K × t K Cn K
47 41 41 46 44 cnmpt21f a C , b C F -1 b K × t K Cn J
48 7 a1i + ˙ J × t J Cn J
49 41 41 45 47 48 cnmpt22f a C , b C F -1 a + ˙ F -1 b K × t K Cn J
50 hmeocn F J Homeo K F J Cn K
51 1 50 mp1i F J Cn K
52 41 41 49 51 cnmpt21f a C , b C F F -1 a + ˙ F -1 b K × t K Cn K
53 52 mptru a C , b C F F -1 a + ˙ F -1 b K × t K Cn K
54 40 53 eqeltri ˙ K × t K Cn K