Metamath Proof Explorer


Theorem mndplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)

Ref Expression
Hypotheses mndplusf.1 B = Base G
mndplusf.2 ˙ = + 𝑓 G
Assertion mndplusf G Mnd ˙ : B × B B

Proof

Step Hyp Ref Expression
1 mndplusf.1 B = Base G
2 mndplusf.2 ˙ = + 𝑓 G
3 mndmgm G Mnd G Mgm
4 1 2 mgmplusf G Mgm ˙ : B × B B
5 3 4 syl G Mnd ˙ : B × B B