Step |
Hyp |
Ref |
Expression |
1 |
|
mndpropd.1 |
|
2 |
|
mndpropd.2 |
|
3 |
|
mndpropd.3 |
|
4 |
|
simplr |
|
5 |
|
simprl |
|
6 |
1
|
ad2antrr |
|
7 |
5 6
|
eleqtrd |
|
8 |
|
simprr |
|
9 |
8 6
|
eleqtrd |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
mndcl |
|
13 |
4 7 9 12
|
syl3anc |
|
14 |
13 6
|
eleqtrrd |
|
15 |
14
|
ralrimivva |
|
16 |
15
|
ex |
|
17 |
|
simplr |
|
18 |
|
simprl |
|
19 |
2
|
ad2antrr |
|
20 |
18 19
|
eleqtrd |
|
21 |
|
simprr |
|
22 |
21 19
|
eleqtrd |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
23 24
|
mndcl |
|
26 |
17 20 22 25
|
syl3anc |
|
27 |
3
|
adantlr |
|
28 |
26 27 19
|
3eltr4d |
|
29 |
28
|
ralrimivva |
|
30 |
29
|
ex |
|
31 |
3
|
oveqrspc2v |
|
32 |
31
|
adantlr |
|
33 |
32
|
eleq1d |
|
34 |
|
simplll |
|
35 |
|
simplrl |
|
36 |
|
simplrr |
|
37 |
|
simpllr |
|
38 |
|
ovrspc2v |
|
39 |
35 36 37 38
|
syl21anc |
|
40 |
|
simpr |
|
41 |
3
|
oveqrspc2v |
|
42 |
34 39 40 41
|
syl12anc |
|
43 |
34 35 36 31
|
syl12anc |
|
44 |
43
|
oveq1d |
|
45 |
42 44
|
eqtrd |
|
46 |
|
ovrspc2v |
|
47 |
36 40 37 46
|
syl21anc |
|
48 |
3
|
oveqrspc2v |
|
49 |
34 35 47 48
|
syl12anc |
|
50 |
3
|
oveqrspc2v |
|
51 |
34 36 40 50
|
syl12anc |
|
52 |
51
|
oveq2d |
|
53 |
49 52
|
eqtrd |
|
54 |
45 53
|
eqeq12d |
|
55 |
54
|
ralbidva |
|
56 |
33 55
|
anbi12d |
|
57 |
56
|
2ralbidva |
|
58 |
1
|
adantr |
|
59 |
58
|
eleq2d |
|
60 |
58
|
raleqdv |
|
61 |
59 60
|
anbi12d |
|
62 |
58 61
|
raleqbidv |
|
63 |
58 62
|
raleqbidv |
|
64 |
2
|
adantr |
|
65 |
64
|
eleq2d |
|
66 |
64
|
raleqdv |
|
67 |
65 66
|
anbi12d |
|
68 |
64 67
|
raleqbidv |
|
69 |
64 68
|
raleqbidv |
|
70 |
57 63 69
|
3bitr3d |
|
71 |
|
simplll |
|
72 |
|
simplr |
|
73 |
|
simpr |
|
74 |
3
|
oveqrspc2v |
|
75 |
71 72 73 74
|
syl12anc |
|
76 |
75
|
eqeq1d |
|
77 |
3
|
oveqrspc2v |
|
78 |
71 73 72 77
|
syl12anc |
|
79 |
78
|
eqeq1d |
|
80 |
76 79
|
anbi12d |
|
81 |
80
|
ralbidva |
|
82 |
81
|
rexbidva |
|
83 |
58
|
raleqdv |
|
84 |
58 83
|
rexeqbidv |
|
85 |
64
|
raleqdv |
|
86 |
64 85
|
rexeqbidv |
|
87 |
82 84 86
|
3bitr3d |
|
88 |
70 87
|
anbi12d |
|
89 |
10 11
|
ismnd |
|
90 |
23 24
|
ismnd |
|
91 |
88 89 90
|
3bitr4g |
|
92 |
91
|
ex |
|
93 |
16 30 92
|
pm5.21ndd |
|