Metamath Proof Explorer


Theorem mndrid

Description: The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses mndlrid.b B = Base G
mndlrid.p + ˙ = + G
mndlrid.o 0 ˙ = 0 G
Assertion mndrid G Mnd X B X + ˙ 0 ˙ = X

Proof

Step Hyp Ref Expression
1 mndlrid.b B = Base G
2 mndlrid.p + ˙ = + G
3 mndlrid.o 0 ˙ = 0 G
4 1 2 3 mndlrid G Mnd X B 0 ˙ + ˙ X = X X + ˙ 0 ˙ = X
5 4 simprd G Mnd X B X + ˙ 0 ˙ = X