Metamath Proof Explorer


Theorem mndsgrp

Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)

Ref Expression
Assertion mndsgrp G Mnd G Smgrp

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid + G = + G
3 1 2 ismnddef G Mnd G Smgrp e Base G x Base G e + G x = x x + G e = x
4 3 simplbi G Mnd G Smgrp