Metamath Proof Explorer


Theorem mndsgrp

Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)

Ref Expression
Assertion mndsgrp Could not format assertion : No typesetting found for |- ( G e. Mnd -> G e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid + G = + G
3 1 2 ismnddef Could not format ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. ( Base ` G ) A. x e. ( Base ` G ) ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. ( Base ` G ) A. x e. ( Base ` G ) ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) with typecode |-
4 3 simplbi Could not format ( G e. Mnd -> G e. Smgrp ) : No typesetting found for |- ( G e. Mnd -> G e. Smgrp ) with typecode |-