Metamath Proof Explorer


Theorem mndtcbas

Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
Assertion mndtcbas φ ∃! x x B

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 1 2 3 mndtcbasval φ B = M
5 sneq x = M x = M
6 5 eqeq2d x = M B = x B = M
7 2 4 6 spcedv φ x B = x
8 eusn ∃! x x B x B = x
9 7 8 sylibr φ ∃! x x B