Metamath Proof Explorer


Theorem mndtcbas2

Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
mndtchom.x φ X B
mndtchom.y φ Y B
Assertion mndtcbas2 φ X = Y

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 mndtchom.x φ X B
5 mndtchom.y φ Y B
6 1 2 3 mndtcbas φ ∃! x x B
7 eumo ∃! x x B * x x B
8 moel * x x B x B y B x = y
9 8 biimpi * x x B x B y B x = y
10 6 7 9 3syl φ x B y B x = y
11 eqeq12 x = X y = Y x = y X = Y
12 11 rspc2gv X B Y B x B y B x = y X = Y
13 4 5 12 syl2anc φ x B y B x = y X = Y
14 10 13 mpd φ X = Y