Metamath Proof Explorer


Theorem mndtcbasval

Description: The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
Assertion mndtcbasval φ B = M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 1 2 mndtcval φ C = Base ndx M Hom ndx M M Base M comp ndx M M M + M
5 4 fveq2d φ Base C = Base Base ndx M Hom ndx M M Base M comp ndx M M M + M
6 snex M V
7 catstr Base ndx M Hom ndx M M Base M comp ndx M M M + M Struct 1 15
8 baseid Base = Slot Base ndx
9 snsstp1 Base ndx M Base ndx M Hom ndx M M Base M comp ndx M M M + M
10 7 8 9 strfv M V M = Base Base ndx M Hom ndx M M Base M comp ndx M M M + M
11 6 10 mp1i φ M = Base Base ndx M Hom ndx M M Base M comp ndx M M M + M
12 5 3 11 3eqtr4d φ B = M