Metamath Proof Explorer


Theorem mndtccat

Description: The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtccat.m φ M Mnd
Assertion mndtccat φ C Cat

Proof

Step Hyp Ref Expression
1 mndtccat.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtccat.m φ M Mnd
3 1 2 mndtccatid φ C Cat Id C = y Base C 0 M
4 3 simpld φ C Cat