| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndtccat.c |
|
| 2 |
|
mndtccat.m |
|
| 3 |
|
eqidd |
|
| 4 |
|
eqidd |
|
| 5 |
|
eqidd |
|
| 6 |
|
fvexd |
|
| 7 |
1 6
|
eqeltrd |
|
| 8 |
|
biid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
mndidcl |
|
| 12 |
2 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
1
|
adantr |
|
| 15 |
2
|
adantr |
|
| 16 |
|
eqidd |
|
| 17 |
|
simpr |
|
| 18 |
|
eqidd |
|
| 19 |
14 15 16 17 17 18
|
mndtchom |
|
| 20 |
13 19
|
eleqtrrd |
|
| 21 |
1
|
adantr |
|
| 22 |
2
|
adantr |
|
| 23 |
|
eqidd |
|
| 24 |
|
simpr1l |
|
| 25 |
|
simpr1r |
|
| 26 |
|
eqidd |
|
| 27 |
21 22 23 24 25 25 26
|
mndtcco |
|
| 28 |
27
|
oveqd |
|
| 29 |
|
simpr31 |
|
| 30 |
|
eqidd |
|
| 31 |
21 22 23 24 25 30
|
mndtchom |
|
| 32 |
29 31
|
eleqtrd |
|
| 33 |
|
eqid |
|
| 34 |
9 33 10
|
mndlid |
|
| 35 |
22 32 34
|
syl2anc |
|
| 36 |
28 35
|
eqtrd |
|
| 37 |
|
simpr2l |
|
| 38 |
21 22 23 25 25 37 26
|
mndtcco |
|
| 39 |
38
|
oveqd |
|
| 40 |
|
simpr32 |
|
| 41 |
21 22 23 25 37 30
|
mndtchom |
|
| 42 |
40 41
|
eleqtrd |
|
| 43 |
9 33 10
|
mndrid |
|
| 44 |
22 42 43
|
syl2anc |
|
| 45 |
39 44
|
eqtrd |
|
| 46 |
9 33
|
mndcl |
|
| 47 |
22 42 32 46
|
syl3anc |
|
| 48 |
21 22 23 24 25 37 26
|
mndtcco |
|
| 49 |
48
|
oveqd |
|
| 50 |
21 22 23 24 37 30
|
mndtchom |
|
| 51 |
47 49 50
|
3eltr4d |
|
| 52 |
|
simpr33 |
|
| 53 |
|
simpr2r |
|
| 54 |
21 22 23 37 53 30
|
mndtchom |
|
| 55 |
52 54
|
eleqtrd |
|
| 56 |
9 33
|
mndass |
|
| 57 |
22 55 42 32 56
|
syl13anc |
|
| 58 |
21 22 23 24 25 53 26
|
mndtcco |
|
| 59 |
21 22 23 25 37 53 26
|
mndtcco |
|
| 60 |
59
|
oveqd |
|
| 61 |
|
eqidd |
|
| 62 |
58 60 61
|
oveq123d |
|
| 63 |
21 22 23 24 37 53 26
|
mndtcco |
|
| 64 |
|
eqidd |
|
| 65 |
63 64 49
|
oveq123d |
|
| 66 |
57 62 65
|
3eqtr4d |
|
| 67 |
3 4 5 7 8 20 36 45 51 66
|
iscatd2 |
|