Metamath Proof Explorer


Theorem mndtcco2

Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
mndtchom.x φ X B
mndtchom.y φ Y B
mndtcco.z φ Z B
mndtcco.o φ · ˙ = comp C
mndtcco2.o2 No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |-
Assertion mndtcco2 Could not format assertion : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 mndtchom.x φ X B
5 mndtchom.y φ Y B
6 mndtcco.z φ Z B
7 mndtcco.o φ · ˙ = comp C
8 mndtcco2.o2 Could not format ( ph -> .o. = ( <. X , Y >. .x. Z ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) with typecode |-
9 1 2 3 4 5 6 7 mndtcco φ X Y · ˙ Z = + M
10 8 9 eqtrd Could not format ( ph -> .o. = ( +g ` M ) ) : No typesetting found for |- ( ph -> .o. = ( +g ` M ) ) with typecode |-
11 10 oveqd Could not format ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) : No typesetting found for |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) with typecode |-