Metamath Proof Explorer


Theorem mndtchom

Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
mndtchom.x φ X B
mndtchom.y φ Y B
mndtchom.h φ H = Hom C
Assertion mndtchom φ X H Y = Base M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 mndtchom.x φ X B
5 mndtchom.y φ Y B
6 mndtchom.h φ H = Hom C
7 1 2 mndtcval φ C = Base ndx M Hom ndx M M Base M comp ndx M M M + M
8 catstr Base ndx M Hom ndx M M Base M comp ndx M M M + M Struct 1 15
9 homid Hom = Slot Hom ndx
10 snsstp2 Hom ndx M M Base M Base ndx M Hom ndx M M Base M comp ndx M M M + M
11 snex M M Base M V
12 11 a1i φ M M Base M V
13 eqid Hom C = Hom C
14 7 8 9 10 12 13 strfv3 φ Hom C = M M Base M
15 6 14 eqtrd φ H = M M Base M
16 1 2 3 4 mndtcob φ X = M
17 1 2 3 5 mndtcob φ Y = M
18 15 16 17 oveq123d φ X H Y = M M M Base M M
19 df-ot M M Base M = M M Base M
20 19 sneqi M M Base M = M M Base M
21 20 oveqi M M M Base M M = M M M Base M M
22 df-ov M M M Base M M = M M Base M M M
23 opex M M V
24 fvex Base M V
25 23 24 fvsn M M Base M M M = Base M
26 21 22 25 3eqtri M M M Base M M = Base M
27 18 26 eqtrdi φ X H Y = Base M