Metamath Proof Explorer


Theorem mndtcid

Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtccat.m φ M Mnd
mndtcid.b φ B = Base C
mndtcid.x φ X B
mndtcid.i φ 1 ˙ = Id C
Assertion mndtcid φ 1 ˙ X = 0 M

Proof

Step Hyp Ref Expression
1 mndtccat.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtccat.m φ M Mnd
3 mndtcid.b φ B = Base C
4 mndtcid.x φ X B
5 mndtcid.i φ 1 ˙ = Id C
6 1 2 mndtccatid φ C Cat Id C = x Base C 0 M
7 6 simprd φ Id C = x Base C 0 M
8 5 7 eqtrd φ 1 ˙ = x Base C 0 M
9 eqidd φ x = X 0 M = 0 M
10 4 3 eleqtrd φ X Base C
11 fvexd φ 0 M V
12 8 9 10 11 fvmptd φ 1 ˙ X = 0 M