Metamath Proof Explorer
Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
mndtcbas.c |
|
|
|
mndtcbas.m |
|
|
|
mndtcbas.b |
|
|
|
mndtchom.x |
|
|
Assertion |
mndtcob |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mndtcbas.c |
|
2 |
|
mndtcbas.m |
|
3 |
|
mndtcbas.b |
|
4 |
|
mndtchom.x |
|
5 |
1 2 3
|
mndtcbasval |
|
6 |
4 5
|
eleqtrd |
|
7 |
|
elsng |
|
8 |
4 7
|
syl |
|
9 |
6 8
|
mpbid |
|