Metamath Proof Explorer


Theorem mndtcob

Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φ M Mnd
mndtcbas.b φ B = Base C
mndtchom.x φ X B
Assertion mndtcob φ X = M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φ M Mnd
3 mndtcbas.b φ B = Base C
4 mndtchom.x φ X B
5 1 2 3 mndtcbasval φ B = M
6 4 5 eleqtrd φ X M
7 elsng X B X M X = M
8 4 7 syl φ X M X = M
9 6 8 mpbid φ X = M