Metamath Proof Explorer
Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
mndtcbas.c |
|
|
|
mndtcbas.m |
|
|
|
mndtcbas.b |
|
|
|
mndtchom.x |
|
|
Assertion |
mndtcob |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndtcbas.c |
|
| 2 |
|
mndtcbas.m |
|
| 3 |
|
mndtcbas.b |
|
| 4 |
|
mndtchom.x |
|
| 5 |
1 2 3
|
mndtcbasval |
|
| 6 |
4 5
|
eleqtrd |
|
| 7 |
|
elsng |
|
| 8 |
4 7
|
syl |
|
| 9 |
6 8
|
mpbid |
|