Database
BASIC LINEAR ALGEBRA
Matrices
The matrix multiplication
mndvlid
Next ⟩
mndvrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
mndvlid
Description:
Tuple-wise left identity in monoids.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypotheses
mndvcl.b
⊢
B
=
Base
M
mndvcl.p
⊢
+
˙
=
+
M
mndvlid.z
⊢
0
˙
=
0
M
Assertion
mndvlid
⊢
M
∈
Mnd
∧
X
∈
B
I
→
I
×
0
˙
+
˙
f
X
=
X
Proof
Step
Hyp
Ref
Expression
1
mndvcl.b
⊢
B
=
Base
M
2
mndvcl.p
⊢
+
˙
=
+
M
3
mndvlid.z
⊢
0
˙
=
0
M
4
elmapex
⊢
X
∈
B
I
→
B
∈
V
∧
I
∈
V
5
4
simprd
⊢
X
∈
B
I
→
I
∈
V
6
5
adantl
⊢
M
∈
Mnd
∧
X
∈
B
I
→
I
∈
V
7
elmapi
⊢
X
∈
B
I
→
X
:
I
⟶
B
8
7
adantl
⊢
M
∈
Mnd
∧
X
∈
B
I
→
X
:
I
⟶
B
9
1
3
mndidcl
⊢
M
∈
Mnd
→
0
˙
∈
B
10
9
adantr
⊢
M
∈
Mnd
∧
X
∈
B
I
→
0
˙
∈
B
11
1
2
3
mndlid
⊢
M
∈
Mnd
∧
x
∈
B
→
0
˙
+
˙
x
=
x
12
11
adantlr
⊢
M
∈
Mnd
∧
X
∈
B
I
∧
x
∈
B
→
0
˙
+
˙
x
=
x
13
6
8
10
12
caofid0l
⊢
M
∈
Mnd
∧
X
∈
B
I
→
I
×
0
˙
+
˙
f
X
=
X