Metamath Proof Explorer


Theorem mndvrid

Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses mndvcl.b B = Base M
mndvcl.p + ˙ = + M
mndvlid.z 0 ˙ = 0 M
Assertion mndvrid M Mnd X B I X + ˙ f I × 0 ˙ = X

Proof

Step Hyp Ref Expression
1 mndvcl.b B = Base M
2 mndvcl.p + ˙ = + M
3 mndvlid.z 0 ˙ = 0 M
4 elmapex X B I B V I V
5 4 simprd X B I I V
6 5 adantl M Mnd X B I I V
7 elmapi X B I X : I B
8 7 adantl M Mnd X B I X : I B
9 1 3 mndidcl M Mnd 0 ˙ B
10 9 adantr M Mnd X B I 0 ˙ B
11 1 2 3 mndrid M Mnd x B x + ˙ 0 ˙ = x
12 11 adantlr M Mnd X B I x B x + ˙ 0 ˙ = x
13 6 8 10 12 caofid0r M Mnd X B I X + ˙ f I × 0 ˙ = X