Metamath Proof Explorer


Theorem mnfaddpnf

Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion mnfaddpnf −∞ + 𝑒 +∞ = 0

Proof

Step Hyp Ref Expression
1 mnfxr −∞ *
2 pnfxr +∞ *
3 xaddval −∞ * +∞ * −∞ + 𝑒 +∞ = if −∞ = +∞ if +∞ = −∞ 0 +∞ if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞
4 1 2 3 mp2an −∞ + 𝑒 +∞ = if −∞ = +∞ if +∞ = −∞ 0 +∞ if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞
5 mnfnepnf −∞ +∞
6 ifnefalse −∞ +∞ if −∞ = +∞ if +∞ = −∞ 0 +∞ if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞ = if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞
7 5 6 ax-mp if −∞ = +∞ if +∞ = −∞ 0 +∞ if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞ = if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞
8 eqid −∞ = −∞
9 8 iftruei if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞ = if +∞ = +∞ 0 −∞
10 eqid +∞ = +∞
11 10 iftruei if +∞ = +∞ 0 −∞ = 0
12 9 11 eqtri if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞ = 0
13 7 12 eqtri if −∞ = +∞ if +∞ = −∞ 0 +∞ if −∞ = −∞ if +∞ = +∞ 0 −∞ if +∞ = +∞ +∞ if +∞ = −∞ −∞ −∞ + +∞ = 0
14 4 13 eqtri −∞ + 𝑒 +∞ = 0