Metamath Proof Explorer


Theorem mnfle

Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion mnfle A * −∞ A

Proof

Step Hyp Ref Expression
1 nltmnf A * ¬ A < −∞
2 mnfxr −∞ *
3 xrlenlt −∞ * A * −∞ A ¬ A < −∞
4 2 3 mpan A * −∞ A ¬ A < −∞
5 1 4 mpbird A * −∞ A