Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
mnflt
Next ⟩
mnfltd
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnflt
Description:
Minus infinity is less than any (finite) real.
(Contributed by
NM
, 14-Oct-2005)
Ref
Expression
Assertion
mnflt
⊢
A
∈
ℝ
→
−∞
<
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
−∞
=
−∞
2
olc
⊢
−∞
=
−∞
∧
A
∈
ℝ
→
−∞
∈
ℝ
∧
A
=
+∞
∨
−∞
=
−∞
∧
A
∈
ℝ
3
1
2
mpan
⊢
A
∈
ℝ
→
−∞
∈
ℝ
∧
A
=
+∞
∨
−∞
=
−∞
∧
A
∈
ℝ
4
3
olcd
⊢
A
∈
ℝ
→
−∞
∈
ℝ
∧
A
∈
ℝ
∧
−∞
<
ℝ
A
∨
−∞
=
−∞
∧
A
=
+∞
∨
−∞
∈
ℝ
∧
A
=
+∞
∨
−∞
=
−∞
∧
A
∈
ℝ
5
mnfxr
⊢
−∞
∈
ℝ
*
6
rexr
⊢
A
∈
ℝ
→
A
∈
ℝ
*
7
ltxr
⊢
−∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
−∞
<
A
↔
−∞
∈
ℝ
∧
A
∈
ℝ
∧
−∞
<
ℝ
A
∨
−∞
=
−∞
∧
A
=
+∞
∨
−∞
∈
ℝ
∧
A
=
+∞
∨
−∞
=
−∞
∧
A
∈
ℝ
8
5
6
7
sylancr
⊢
A
∈
ℝ
→
−∞
<
A
↔
−∞
∈
ℝ
∧
A
∈
ℝ
∧
−∞
<
ℝ
A
∨
−∞
=
−∞
∧
A
=
+∞
∨
−∞
∈
ℝ
∧
A
=
+∞
∨
−∞
=
−∞
∧
A
∈
ℝ
9
4
8
mpbird
⊢
A
∈
ℝ
→
−∞
<
A