Metamath Proof Explorer


Theorem mnflt

Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion mnflt A −∞ < A

Proof

Step Hyp Ref Expression
1 eqid −∞ = −∞
2 olc −∞ = −∞ A −∞ A = +∞ −∞ = −∞ A
3 1 2 mpan A −∞ A = +∞ −∞ = −∞ A
4 3 olcd A −∞ A −∞ < A −∞ = −∞ A = +∞ −∞ A = +∞ −∞ = −∞ A
5 mnfxr −∞ *
6 rexr A A *
7 ltxr −∞ * A * −∞ < A −∞ A −∞ < A −∞ = −∞ A = +∞ −∞ A = +∞ −∞ = −∞ A
8 5 6 7 sylancr A −∞ < A −∞ A −∞ < A −∞ = −∞ A = +∞ −∞ A = +∞ −∞ = −∞ A
9 4 8 mpbird A −∞ < A