Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
mnfltpnf
Next ⟩
mnfltxr
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnfltpnf
Description:
Minus infinity is less than plus infinity.
(Contributed by
NM
, 14-Oct-2005)
Ref
Expression
Assertion
mnfltpnf
⊢
−∞
<
+∞
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
−∞
=
−∞
2
eqid
⊢
+∞
=
+∞
3
olc
⊢
−∞
=
−∞
∧
+∞
=
+∞
→
−∞
∈
ℝ
∧
+∞
∈
ℝ
∧
−∞
<
ℝ
+∞
∨
−∞
=
−∞
∧
+∞
=
+∞
4
1
2
3
mp2an
⊢
−∞
∈
ℝ
∧
+∞
∈
ℝ
∧
−∞
<
ℝ
+∞
∨
−∞
=
−∞
∧
+∞
=
+∞
5
4
orci
⊢
−∞
∈
ℝ
∧
+∞
∈
ℝ
∧
−∞
<
ℝ
+∞
∨
−∞
=
−∞
∧
+∞
=
+∞
∨
−∞
∈
ℝ
∧
+∞
=
+∞
∨
−∞
=
−∞
∧
+∞
∈
ℝ
6
mnfxr
⊢
−∞
∈
ℝ
*
7
pnfxr
⊢
+∞
∈
ℝ
*
8
ltxr
⊢
−∞
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
−∞
<
+∞
↔
−∞
∈
ℝ
∧
+∞
∈
ℝ
∧
−∞
<
ℝ
+∞
∨
−∞
=
−∞
∧
+∞
=
+∞
∨
−∞
∈
ℝ
∧
+∞
=
+∞
∨
−∞
=
−∞
∧
+∞
∈
ℝ
9
6
7
8
mp2an
⊢
−∞
<
+∞
↔
−∞
∈
ℝ
∧
+∞
∈
ℝ
∧
−∞
<
ℝ
+∞
∨
−∞
=
−∞
∧
+∞
=
+∞
∨
−∞
∈
ℝ
∧
+∞
=
+∞
∨
−∞
=
−∞
∧
+∞
∈
ℝ
10
5
9
mpbir
⊢
−∞
<
+∞