Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Infinity and the extended real number system
mnfnre
Next ⟩
ressxr
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnfnre
Description:
Minus infinity is not a real number.
(Contributed by
NM
, 13-Oct-2005)
Ref
Expression
Assertion
mnfnre
⊢
−∞
∉
ℝ
Proof
Step
Hyp
Ref
Expression
1
df-mnf
⊢
−∞
=
𝒫
+∞
2
df-pnf
⊢
+∞
=
𝒫
⋃
ℂ
3
2
pweqi
⊢
𝒫
+∞
=
𝒫
𝒫
⋃
ℂ
4
1
3
eqtri
⊢
−∞
=
𝒫
𝒫
⋃
ℂ
5
2pwuninel
⊢
¬
𝒫
𝒫
⋃
ℂ
∈
ℂ
6
4
5
eqneltri
⊢
¬
−∞
∈
ℂ
7
recn
⊢
−∞
∈
ℝ
→
−∞
∈
ℂ
8
6
7
mto
⊢
¬
−∞
∈
ℝ
9
8
nelir
⊢
−∞
∉
ℝ